$A + B \to $ products, it is found that the rate of the reaction is proportional to the concentration of $A,$ but it is independent of the concentration of $B$, then
The order of the reaction $2$ and molecularity $1$
Molecularity of the reaction is $2$ but order is $1$
Order is $ 2$ and molecularity is $2$
Order of the reaction is $2$ but molecularity is $0$
Diazonium salt decomposes as ${C_6}{H_5}N_2^ + C{l^ - } \to {C_6}{H_5}Cl + {N_2}$ At ${0\,^o}C$, the evolution of ${N_2}$ becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is
Differential form of the rate equation is
$\frac{{dx}}{{dt}} = k\left[ P \right]{\left[ Q \right]^{0.5}}{\left[ R \right]^{0.5}}$
Which statement about the above equation is wrong?
The reaction ${N_2}{O_5}$ (in $CCl_4$ solution) $ \to 2N{O_2}$ (solution) $ + \frac{1}{2}{O_2}(g)$ is of first order in ${N_2}{O_5}$ with rate constant $6.2 \times {10^{ - 1}}{s^{ - 1}}.$ What is the value of rate of reaction when $[{N_2}{O_5}] = 1.25\,mole\,{l^{ - 1}}$
Calculate the order of the reaction in $A$ and $B$
$A$ $(mol/l)$ |
$B$ $(mol/l)$ |
Rate |
$0.05$ | $0.05$ | $1.2\times 10^{-3}$ |
$0.10$ | $0.05$ | $2.4\times 10^{-3}$ |
$0.05$ | $0.10$ | $1.2\times 10^{-3}$ |
For the reaction $A \to B$, the rate increases by a factor of $2.25 $ when the concentration of $A$ is increased by $ 1.5$. What is the order of the reaction